home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Space & Astronomy
/
Space and Astronomy (October 1993).iso
/
mac
/
TEXT_ZIP
/
spacedig
/
V16_5
/
V16NO520.ZIP
/
V16NO520
Wrap
Internet Message Format
|
1993-07-13
|
36KB
Date: Wed, 5 May 93 05:32:48
From: Space Digest maintainer <digests@isu.isunet.edu>
Reply-To: Space-request@isu.isunet.edu
Subject: Space Digest V16 #520
To: Space Digest Readers
Precedence: bulk
Space Digest Wed, 5 May 93 Volume 16 : Issue 520
Today's Topics:
Space FAQ 05/15 - References
Space FAQ 06/15 - Constants and Equations
Space FAQ 07/15 - Astronomical Mnemonics
Welcome to the Space Digest!! Please send your messages to
"space@isu.isunet.edu", and (un)subscription requests of the form
"Subscribe Space <your name>" to one of these addresses: listserv@uga
(BITNET), rice::boyle (SPAN/NSInet), utadnx::utspan::rice::boyle
(THENET), or space-REQUEST@isu.isunet.edu (Internet).
----------------------------------------------------------------------
Date: 3 May 1993 12:16:48 -0400
From: Jon Leech <leech@cs.unc.edu>
Subject: Space FAQ 05/15 - References
Newsgroups: sci.astro,sci.space,sci.answers,news.answers
Archive-name: space/references
Last-modified: $Date: 93/05/03 12:08:15 $
REFERENCES ON SPECIFIC AREAS
PUBLISHERS OF SPACE/ASTRONOMY MATERIAL
Astronomical Society of the Pacific
1290 24th Avenue
San Francisco, CA 94122
More expensive but better organized slide sets.
Cambridge University Press
32 East 57th Street
New York, NY 10022
Crawford-Peters Aeronautica
P.O. Box 152528
San Diego, CA 92115
(619) 287-3933
An excellent source of all kinds of space publications. They publish
a number of catalogs, including:
Aviation and Space, 1945-1962
Aviation and Space, 1962-1990
Space and Related Titles
European Southern Observatory
Information and Photographic Service
Dr R.M. West
Karl Scharzschild Strasse 2
D-8046 Garching bei Munchen
FRG
Slide sets, posters, photographs, conference proceedings.
Finley Holiday Film Corporation
12607 East Philadelphia Street
Whittier, California 90601
(213)945-3325
(800)FILMS-07
Wide selection of Apollo, Shuttle, Viking, and Voyager slides at ~50
cents/slide. Call for a catalog.
Hansen Planetarium (Utah)
Said to hold sales on old slide sets. Look in Sky & Telescope
for contact info.
Lunar and Planetary Institute
3303 NASA Road One
Houston, TX 77058-4399
Technical, geology-oriented slide sets, with supporting
booklets.
John Wiley & Sons
605 Third Avenue
New York, NY 10158-0012
Sky Publishing Corporation
PO Box 9111
Belmont, MA 02178-9111
Offers "Sky Catalogue 2000.0" on PC floppy with information
(including parallax) for 45000 stars.
Roger Wheate
Geography Dept.
University of Calgary, Alberta
Canada T2N 1N4
(403)-220-4892
(403)-282-7298 (FAX)
wheate@uncamult.bitnet
Offers a 40-slide set called "Mapping the Planets" illustrating
recent work in planetary cartography, comes with a booklet and
information on getting your own copies of the maps. $50 Canadian,
shipping included.
Superintendent of Documents
US Government Printing Office
Washington, DC 20402
Univelt, Inc.
P. O. Box 28130
San Diego, Ca. 92128
Publishers for the American Astronomical Society.
US Naval Observatory
202-653-1079 (USNO Bulletin Board via modem)
202-653-1507 General
Willmann-Bell
P.O. Box 35025
Richmond, Virginia 23235 USA
(804)-320-7016 9-5 EST M-F
CAREERS IN THE SPACE INDUSTRY
In 1990 the Princeton Planetary Society published the first edition of
"Space Jobs: The Guide to Careers in Space-Related Fields." The
publication was enormously successful: we distributed 2000 copies to
space enthusiasts across the country and even sent a few to people in
Great Britain, Australia, and Ecuador. Due to the tremendous response to
the first edition, PPS has published an expanded, up-to-date second
edition of the guide.
The 40-page publication boasts 69 listings for summer and full-time job
opportunities as well as graduate school programs. The second edition of
"Space Jobs" features strategies for entering the space field and
describes positions at consulting and engineering firms, NASA, and
non-profit organizations. The expanded special section on graduate
schools highlights a myriad of programs ranging from space manufacturing
to space policy. Additional sections include tips on becoming an
astronaut and listings of NASA Space Grant Fellowships and Consortia, as
well as NASA Centers for the Commercial Development of Space.
To order send check or money order made payable to Princeton Planetary
Society for $4 per copy, plus $1 per copy for shipping and handling
(non-US customers send an International Money Order payable in US
dollars) to:
Princeton Planetary Society
315 West College
Princeton University
Princeton, NJ 08544
DC-X SINGLE-STAGE TO ORBIT (SSTO) PROGRAM
SDI's SSRT (Single Stage Rocket Technology) project has funded a
suborbital technology demonstrator called DC-X that should fly in
mid-1993. Further development towards an operational single-stage to
orbit vehicle (called Delta Clipper) is uncertain at present.
An collection of pictures and files relating to DC-X is available by
anonymous FTP or email server in the directory
bongo.cc.utexas.edu:pub/delta-clipper
Chris W. Johnson (chrisj@emx.cc.utexas.edu) maintains the archive.
HOW TO NAME A STAR AFTER A PERSON
Official names are decided by committees of the International
Astronomical Union, and are not for sale. There are purely commercial
organizations which will, for a fee, send you pretty certificates and
star maps describing where to find "your" star. These organizations have
absolutely no standing in the astronomical community and the names they
assign are not used by anyone else. It's also likely that you won't be
able to see "your" star without binoculars or a telescope. See the back
pages of Astronomy or other amateur astronomy publications for contact
info; one such organization may be found at:
International Star Registry
34523 Wilson Road
Ingleside, IL 60041
This is not an endorsement of ISR.
LLNL "GREAT EXPLORATION"
The LLNL "Great Exploration", a plan for an on-the-cheap space station,
Lunar base, and Mars mission using inflatable space structures, excited
a lot of interest on the net and still comes up from time to time. Some
references cited during net discussion were:
Avation Week Jan 22, 1990 for an article on the overall Great
Exploration
NASA Assessment of the LLNL Space Exploration Proposal and LLNL
Responses by Dr. Lowell Wood LLNL Doc. No. SS 90-9. Their address
is: PO Box 808 Livermore, CA 94550 (the NASA authors are unknown).
Briefing slides of a presentation to the NRC last December may be
available. Write LLNL and ask.
Conceptual Design Study for Modular Inflatable Space Structures, a
final report for purchase order B098747 by ILC Dover INC. I don't
know how to get this except from LLNL or ILC Dover. I don't have an
address for ILC.
LUNAR PROSPECTOR
Lunar Exploration Inc. (LEI) is a non-profit corporation working on a
privately funded lunar polar orbiter. Lunar Prospector is designed to
perform a geochemical survey and search for frozen volatiles at the
poles. A set of reference files describing the project is available in
ames.arc.nasa.gov:pub/SPACE/LEI/*
LUNAR SCIENCE AND ACTIVITIES
Grant H Heiken, David T Vaniman, and Bevan M French (editors), "Lunar
Sourcebook, A User's Guide to the Moon", Cambridge University Press
1991, ISBN 0-521-33444-6; hardcover; expensive. A one-volume
encyclopedia of essentially everything known about the Moon, reviewing
current knowledge in considerable depth, with copious references. Heavy
emphasis on geology, but a lot more besides, including considerable
discussion of past lunar missions and practical issues relevant to
future mission design. *The* reference book for the Moon; all others are
obsolete.
Wendell Mendell (ed), "Lunar Bases and Space Activities of the 21st
Century", $15. "Every serious student of lunar bases *must* have this
book" - Bill Higgins. Available from:
Lunar and Planetary Institute
3303 NASA Road One
Houston, TX 77058-4399
If you want to order books, call (713)486-2172.
Thomas A. Mutch, "Geology of the Moon: A Stratigraphic View", Princeton
University Press, 1970. Information about the Lunar Orbiter missions,
including maps of the coverage of the lunar nearside and farside by
various Orbiters.
ORBITING EARTH SATELLITE HISTORIES
A list of Earth orbiting satellites (that are still in orbit) is
available by anonymous FTP in:
ames.arc.nasa.gov:pub/SPACE/FAQ/Satellites
SPACECRAFT MODELS
"Space in Miniature #2: Gemini" by
Michael J. Mackowski
1621 Waterwood Lane, St. Louis, MO 63146
$7.50
Only 34pp but enough pictures & diagrams to interest more than just the
modelling community, I feel.
Marco's Miniatures of Dracut, Mass. have produced a 1/144 Skylab in an
edition of 500 & a 1/48 Lunar Rover (same scale as Monogram and Revell
Lunar Modules) in a similar edition. Prices are $45 for Skylab, $24 for
LRV. Check with them for postage etc. I have no connection with them,
but have found their service to be good and their stock of rare/old kits
*is* impressive. Prices range from reasonable ($35 for Monogram 1/32
scale Apollo CSM with cutaway details) to spectacular ($145 for Airfix
Vostok).
Four Star Collectibles
P.O. Box 658
Dracut Mass 01826, USA.
(508)-957-0695.
Voyager, HST, Viking, Lunar Rover etc. kits from:
Lunar Models
5120 Grisham
Rowlett, Texas 75088
(214)-475-4230
As reviewed by Bob Kaplow:
Peter Alway's book "Scale Model Rocketry" is now available. Mine
arrived in the mail earlier this week. To get your own copy, send
$19.95 + $2.50 s/h ($22.45 total) to:
Peter Alway
2830 Pittsfield
Ann Arbor, MI 48104
The book includes information on collecting scale data, construction
of scale models, and several handy tables. Appendicies include plans
for 3 sport scale models, a 1:9.22 D Region Tomahawk (BT50), a 1/40
V-2 (BT60), and a 1/9.16 Aerobee 150A (BT55/60).
I've only begun to study the book, but it certainly will be a
valuable data source for many modellers. Most vehicles include
several paragraphs of text describing the missions flown by the
rocket, various specs including "NAR" engine classification, along
with a dimensioned drawing, color layouts & paint pattern, and a
black & white photograph.
The vehicles included are the Aerobee 150A, Aerobee 300, Aerobee Hi,
Arcas, Asp, Astrobee 1500, Astrobee D, Atlas Centaur, Atlas-Agena,
Atlas-Score, Baby WAC, D-Region Tomahawk, Deacon Rockoon, Delta B,
Delta E, Gemini-Titan II, Iris, Javelin, Juno 1, Juno 2, Little Joe
1, Little Joe 2, Mercury-Atlas, Mercury-Redstone, Nike-Apache,
Nike-Asp, Nike-Cajun, Nike-Deacon, Nike-Tomahawk, RAM B, Saturn 1
Block 1, Saturn 1 Block 2, Saturn 1B, Saturn 5, Scout, Standard
Aerobee, Terrapin, Thor-Able, Titan III C, Titan III E, Trailblazer
1, V-2, Vanguard, Viking Model 1, Viking Model 2, and Wac Corporal.
ROCKET PROPULSION
George P. Sutton, "Rocket Propulsion Elements", 5th edn,
Wiley-Interscience 1986, ISBN 0-471-80027-9. Pricey textbook. The
best (nearly the only) modern introduction to the technical side of
rocketry. A good place to start if you want to know the details. Not
for the math-shy. Straight chemical rockets, essentially nothing on
more advanced propulsion (although earlier editions reportedly had
some coverage).
Dieter K. Huzel and David H. Huang, "Design of Liquid Propellant
Rocket Engines", NASA SP-125.
NTIS N71-29405 PC A20/MF A01 1971 461p
Out of print; reproductions may be obtained through the NTIS
(expensive). The complete and authoritative guide to designing
liquid-fuel engines. Reference #1 in most chapters of Sutton. Heavy
emphasis on practical issues, what works and what doesn't, what the
typical values of the fudge factors are. Stiff reading, massive
detail; written for rocket engineers by rocket engineers.
SPACECRAFT DESIGN
Brij N. Agrawal, "Design of Geosynchronous Spacecraft",
Prentice-Hall, ISBN 0-13-200114-4.
James R. Wertz ed, "Spacecraft Attitude Determination and
Control", Kluwer, ISBN 90-277-1204-2.
P.R.K. Chetty, "Satellite Technology and its Applications",
McGraw-Hill, ISBN 0-8306-9688-1.
James R. Wertz and Wiley J. Larson (editors), "Space Mission
Analysis and Design", Kluwer Academic Publishers
(Dordrecht/Boston/London) 1991, ISBN 0-7923-0971-5 (paperback), or
0-7923-0970-7 (hardback).
This looks at system-level design of a spacecraft, rather than
detailed design. 23 chapters, 4 appendices, about 430 pages. It
leads the reader through the mission design and system-level
design of a fictitious earth-observation satellite, to
illustrate the principles that it tries to convey. Warning:
although the book is chock-full of many useful reference tables,
some of the numbers in at least one of those tables (launch
costs for various launchers) appear to be quite wrong. Can be
ordered by telephone, using a credit card; Kluwer's phone number
is (617)-871-6600. Cost $34.50.
ESOTERIC PROPULSION SCHEMES (SOLAR SAILS, LASERS, FUSION...)
This needs more and more up-to-date references, but it's a start.
ANTIMATTER:
"Antiproton Annihilation Propulsion", Robert Forward
AFRPL TR-85-034 from the Air Force Rocket Propulsion Laboratory
(AFRPL/XRX, Stop 24, Edwards Air Force Base, CA 93523-5000).
NTIS AD-A160 734/0 PC A10/MF A01
PC => Paper copy, A10 => $US57.90 -- or maybe Price Code?
MF => MicroFiche, A01 => $US13.90
Technical study on making, holding, and using antimatter for
near-term (30-50 years) propulsion systems. Excellent
bibliography. Forward is the best-known proponent
of antimatter.
This also may be available as UDR-TR-85-55 from the contractor,
the University of Dayton Research Institute, and DTIC AD-A160
from the Defense Technical Information Center, Defense Logistics
Agency, Cameron Station, Alexandria, VA 22304-6145. And it's
also available from the NTIS, with yet another number.
"Advanced Space Propulsion Study, Antiproton and Beamed Power
Propulsion", Robert Forward
AFAL TR-87-070 from the Air Force Astronautics Laboratory, DTIC
#AD-A189 218.
NTIS AD-A189 218/1 PC A10/MF A01
Summarizes the previous paper, goes into detail on beamed power
systems including " 1) pellet, microwave, and laser beamed power
systems for intersteller transport; 2) a design for a
near-relativistic laser-pushed lightsail using near-term laser
technology; 3) a survey of laser thermal propulsion, tether
transportation systems, antiproton annihilation propulsion,
exotic applications of solar sails, and laser-pushed
interstellar lightsails; 4) the status of antiproton
annihilation propulsion as of 1986; and 5) the prospects for
obtaining antimatter ions heavier than antiprotons." Again,
there is an extensive bibliography.
"Application of Antimatter - Electric Power to Interstellar
Propulsion", G. D. Nordley, JBIS Interstellar Studies issue of
6/90.
BUSSARD RAMJETS AND RELATED METHODS:
G. L. Matloff and A. J. Fennelly, "Interstellar Applications and
Limitations of Several Electrostatic/Electromagnetic Ion Collection
Techniques", JBIS 30 (1977):213-222
N. H. Langston, "The Erosion of Interstellar Drag Screens", JBIS 26
(1973): 481-484
C. Powell, "Flight Dynamics of the Ram-Augmented Interstellar
Rocket", JBIS 28 (1975):553-562
A. R. Martin, "The Effects of Drag on Relativistic Spacefight", JBIS
25 (1972):643-652
FUSION:
"A Laser Fusion Rocket for Interplanetary Propulsion", Roderick Hyde,
LLNL report UCRL-88857. (Contact the Technical Information Dept. at
Livermore)
Fusion Pellet design: Fuel selection. Energy loss mechanisms.
Pellet compression metrics. Thrust Chamber: Magnetic nozzle.
Shielding. Tritium breeding. Thermal modeling. Fusion Driver
(lasers, particle beams, etc): Heat rejection. Vehicle Summary:
Mass estimates. Vehicle Performance: Interstellar travel
required exhaust velocities at the limit of fusion's capability.
Interplanetary missions are limited by power/weight ratio.
Trajectory modeling. Typical mission profiles. References,
including the 1978 report in JBIS, "Project Daedalus", and
several on ICF and driver technology.
"Fusion as Electric Propulsion", Robert W. Bussard, Journal of
Propulsion and Power, Vol. 6, No. 5, Sept.-Oct. 1990
Fusion rocket engines are analyzed as electric propulsion
systems, with propulsion thrust-power-input-power ratio (the
thrust-power "gain" G(t)) much greater than unity. Gain values
of conventional (solar, fission) electric propulsion systems are
always quite small (e.g., G(t)<0.8). With these, "high-thrust"
interplanetary flight is not possible, because system
acceleration (a(t)) capabilities are always less than the local
gravitational acceleration. In contrast, gain values 50-100
times higher are found for some fusion concepts, which offer
"high-thrust" flight capability. One performance example shows a
53.3 day (34.4 powered; 18.9 coast), one-way transit time with
19% payload for a single-stage Earth/Mars vehicle. Another shows
the potential for high acceleration (a(t)=0.55g(o)) flight in
Earth/moon space.
"The QED Engine System: Direct Electric Fusion-Powered Systems for
Aerospace Flight Propulsion" by Robert W. Bussard, EMC2-1190-03,
available from Energy/Matter Conversion Corp., 9100 A. Center
Street, Manassas, VA 22110.
[This is an introduction to the application of Bussard's version
of the Farnsworth/Hirsch electrostatic confinement fusion
technology to propulsion. 1500<Isp<5000 sec. Farnsworth/Hirsch
demonstrated a 10**10 neutron flux with their device back in
1969 but it was dropped when panic ensued over the surprising
stability of the Soviet Tokamak. Hirsch, responsible for the
panic, has recently recanted and is back working on QED. -- Jim
Bowery]
"PLASMAKtm Star Power for Energy Intensive Space Applications", by
Paul M. Koloc, Eight ANS Topical Meeting on Technology of Fusion
Energy, special issue FUSION TECHNOLOGY, March 1989.
Aneutronic energy (fusion with little or negligible neutron
flux) requires plasma pressures and stable confinement times
larger than can be delivered by current approaches. If plasma
pressures appropriate to burn times on the order of milliseconds
could be achieved in aneutronic fuels, then high power densities
and very compact, realtively clean burning engines for space and
other special applications would be at hand. The PLASMAKtm
innovation will make this possible; its unique pressure
efficient structure, exceptional stability, fluid-mechanically
compressible Mantle and direct inductive MHD electric power
conversion advantages are described. Peak burn densities of tens
of megawats per cc give it compactness even in the
multi-gigawatt electric output size. Engineering advantages
indicate a rapid development schedule at very modest cost. [I
strongly recommend that people take this guy seriously. Bob
Hirsch, the primary proponent of the Tokamak, has recently
declared Koloc's PLASMAKtm precursor, the spheromak, to be one
of 3 promising fusion technologies that should be pursued rather
than Tokamak. Aside from the preceeding appeal to authority, the
PLASMAKtm looks like it finally models ball-lightning with solid
MHD physics. -- Jim Bowery]
ION DRIVES:
Retrieve files pub/SPACE/SPACELINK/6.5.2.* from the Ames SPACE
archive; these deal with many aspects of ion drives and describe the
SERT I and II missions, which flight-tested cesium ion thrusters in
the 1960s and 70s. There are numerous references.
MASS DRIVERS (COILGUNS, RAILGUNS):
IEEE Transactions on Magnetics (for example, v. 27 no. 1, January
1991 issue). Every so often they publish the proceedings of the
Symposium on Electromagnetic Launcher Technology, including hundreds
of papers on the subject. It's a good look at the state of the art,
though perhaps not a good tutorial for beginners. Anybody know some
good review papers?
NUCLEAR ROCKETS (FISSION):
"Technical Notes on Nuclear Rockets", by Bruce W. Knight and Donald
Kingsbury, unpublished. May be available from: Donald Kingsbury,
Math Dept., McGill University, PO Box 6070, Station A, Montreal,
Quebec M3C 3G1 Canada.
SOLAR SAILS:
Starsailing. Solar Sails and Interstellar Travel. Louis Friedman,
Wiley, New York, 1988, 146 pp., paper $9.95. (Not very technical,
but an adequate overview.)
"Roundtrip Interstellar Travel Using Laser-Pushed Lightsails
(Journal of Spacecraft and Rockets, vol. 21, pp. 187-95, Jan.-Feb.
1984)
TETHERS:
_Tethers and Asteroids for Artificial Gravity Assist in the Solar
System,_ by P.A. Penzo and H.L. Mayer., _Journal of Spacecraft
and Rockets_ for Jan-Feb 1986.
Details how a spacecraft with a kevlar tether of the same mass
can change its velocity by up to slightly less than 1 km/sec. if
it is travelling under that velocity wrt a suitable asteroid.
GENERAL:
"Alternate Propulsion Energy Sources", Robert Forward
AFPRL TR-83-067.
NTIS AD-B088 771/1 PC A07/MF A01 Dec 83 138p
Keywords: Propulsion energy, metastable helium, free-radical
hydrogen, solar pumped (sic) plasmas, antiproton annihiliation,
ionospheric lasers, solar sails, perforated sails, microwave
sails, quantum fluctuations, antimatter rockets... It's a wide,
if not deep, look at exotic energy sources which might be useful
for space propulsion. It also considers various kinds of laser
propulsion, metallic hydrogen, tethers, and unconventional
nuclear propulsion. The bibliographic information, pointing to
the research on all this stuff, belongs on every daydreamer's
shelf.
Future Magic. Dr. Robert L. Forward, Avon, 1988. ISBN 0-380-89814-4.
Nontechnical discussion of tethers, antimatter, gravity control,
and even futher-out topics.
SPY SATELLITES
*Deep Black*, by William Burrows;
"best modern general book for spysats."
1) A Base For Debate: The US Satellite Station at Nurrungar, Des Ball,
Allen and Unwin Australia, 1987 ISBN 0 04 355027 4 [ covers DSP early
warning satellites]
2) Pine Gap: Australia and the US Geostationary Signals intelligence
satellite program, Des Ball, Allen and Unwin Australia, 1988 ISBN 0 04
363002 5. [covers RHYOLITE/AQUACADE, CHALET/VORTEX, and MAGNUM signals
intelligence satellites]
3) Guardians: Strategic Reconnaissance Satellites, Curtis Peebles, 1987,
Ian Allan, ISBN 0 7110 17654 [ good on MOL, military Salyut and Soviet
satellites, less so on others. Tends to believe what he's told so flaws
in discussion of DSP, RHYOLITE et al..]
4) America's Secret Eyes In Space: The Keyhole Spy Satellite Program,
Jeffrey Richelson, 1990, Harper and Row, ISBN 0 88730 285 8 [ in a class
of its own, *the* historical reference on the KEYHOLE satellites]
5) Secret Sentries in Space, Philip J Klass, 1971.
"long out of print but well worth a look"
SPACE SHUTTLE COMPUTER SYSTEMS
%J Communications of the ACM
%V 27
%N 9
%D September 1984
%K Special issue on space [shuttle] computers
%A Myron Kayton
%T Avionics for Manned Spacecraft
%J IEEE Transactions on Aerospace and Electronic Systems
%V 25
%N 6
%D November 1989
%P 786-827
Other various AIAA and IEEE publications.
Computers in Spaceflight: The NASA Experience
James E. Tomayko
1988?
SETI COMPUTATION (SIGNAL PROCESSING)
%A D. K. Cullers
%A Ivan R. Linscott
%A Bernard M. Oliver
%T Signal Processing in SETI
%J Communications of the ACM
%V 28
%N 11
%D November 1984
%P 1151-1163
%K CR Categories and Subject Descriptors: D.4.1 [Operating Systems]:
Process Management - concurrency; I.5.4 [Pattern Recognition]:
Applications - signal processing; J.2 [Phsyical Sciences and Engineering]:
astronomy
General Terms: Design
Additional Key Words and Phrases: digital Fourier transforms,
finite impulse-response filters, interstellar communications,
Search for Extra-terrestrial Intelligence, signal detection,
spectrum analysis
AMATEUR SATELLIES & WEATHER SATELLITES
A fairly long writeup on receiving and interpreting weather satellite
photos is available from the Ames SPACE archive in
pub/SPACE/FAQ/WeatherPhotos.
The American Radio Relay League publication service offers the following
references (also see the section on AMSAT in the space groups segment of
the FAQ):
ARRL Satellite Experimenters Handbook, #3185, $20
ARRL Weather Satellite Handbook, #3193, $20
IBM-PC software for Weather Satellite Handbook, #3290, $10
AMSAT NA 5th Space Symposium, #0739, $12
AMSAT NA 6th Space Symposium, #2219, $12
Shipping is extra.
The American Radio Relay League
Publications Department
225 Main Street
Newington, CT 06111
(203)-666-1541
TIDES
Srinivas Bettadpur contributed a writeup on tides, available from the
Ames SPACE archive in pub/SPACE/FAQ/Tides. It covers the following
areas:
- 2-D Example of Tidal Deformation
- Treatment of Tidal Fields in Practice
- Long term evolution of the Earth-Moon system under tides
The writeup refers to the following texts:
"Geophysical Geodesy" by K. Lambeck
"Tides of the planet Earth" by P. Melchior
NEXT: FAQ #6/15 - Constants and equations for calculations
------------------------------
Date: 3 May 1993 12:18:19 -0400
From: Jon Leech <leech@cs.unc.edu>
Subject: Space FAQ 06/15 - Constants and Equations
Newsgroups: sci.astro,sci.space,sci.answers,news.answers
Archive-name: space/constants
Last-modified: $Date: 93/05/03 12:07:58 $
CONSTANTS AND EQUATIONS FOR CALCULATIONS
This list was originally compiled by Dale Greer. Additions would be
appreciated.
Numbers in parentheses are approximations that will serve for most
blue-skying purposes.
Unix systems provide the 'units' program, useful in converting
between different systems (metric/English, etc.)
NUMBERS
7726 m/s (8000) -- Earth orbital velocity at 300 km altitude
3075 m/s (3000) -- Earth orbital velocity at 35786 km (geosync)
6371 km (6400) -- Mean radius of Earth
6378 km (6400) -- Equatorial radius of Earth
1738 km (1700) -- Mean radius of Moon
5.974e24 kg (6e24) -- Mass of Earth
7.348e22 kg (7e22) -- Mass of Moon
1.989e30 kg (2e30) -- Mass of Sun
3.986e14 m^3/s^2 (4e14) -- Gravitational constant times mass of Earth
4.903e12 m^3/s^2 (5e12) -- Gravitational constant times mass of Moon
1.327e20 m^3/s^2 (13e19) -- Gravitational constant times mass of Sun
384401 km ( 4e5) -- Mean Earth-Moon distance
1.496e11 m (15e10) -- Mean Earth-Sun distance (Astronomical Unit)
1 megaton (MT) TNT = about 4.2e15 J or the energy equivalent of
about .05 kg (50 gm) of matter. Ref: J.R Williams, "The Energy Level
of Things", Air Force Special Weapons Center (ARDC), Kirtland Air
Force Base, New Mexico, 1963. Also see "The Effects of Nuclear
Weapons", compiled by S. Glasstone and P.J. Dolan, published by the
US Department of Defense (obtain from the GPO).
EQUATIONS
Where d is distance, v is velocity, a is acceleration, t is time.
Additional more specialized equations are available from:
ames.arc.nasa.gov:pub/SPACE/FAQ/MoreEquations
For constant acceleration
d = d0 + vt + .5at^2
v = v0 + at
v^2 = 2ad
Acceleration on a cylinder (space colony, etc.) of radius r and
rotation period t:
a = 4 pi**2 r / t^2
For circular Keplerian orbits where:
Vc = velocity of a circular orbit
Vesc = escape velocity
M = Total mass of orbiting and orbited bodies
G = Gravitational constant (defined below)
u = G * M (can be measured much more accurately than G or M)
K = -G * M / 2 / a
r = radius of orbit (measured from center of mass of system)
V = orbital velocity
P = orbital period
a = semimajor axis of orbit
Vc = sqrt(M * G / r)
Vesc = sqrt(2 * M * G / r) = sqrt(2) * Vc
V^2 = u/a
P = 2 pi/(Sqrt(u/a^3))
K = 1/2 V**2 - G * M / r (conservation of energy)
The period of an eccentric orbit is the same as the period
of a circular orbit with the same semi-major axis.
Change in velocity required for a plane change of angle phi in a
circular orbit:
delta V = 2 sqrt(GM/r) sin (phi/2)
Energy to put mass m into a circular orbit (ignores rotational
velocity, which reduces the energy a bit).
GMm (1/Re - 1/2Rcirc)
Re = radius of the earth
Rcirc = radius of the circular orbit.
Classical rocket equation, where
dv = change in velocity
Isp = specific impulse of engine
Ve = exhaust velocity
x = reaction mass
m1 = rocket mass excluding reaction mass
g = 9.80665 m / s^2
Ve = Isp * g
dv = Ve * ln((m1 + x) / m1)
= Ve * ln((final mass) / (initial mass))
Relativistic rocket equation (constant acceleration)
t (unaccelerated) = c/a * sinh(a*t/c)
d = c**2/a * (cosh(a*t/c) - 1)
v = c * tanh(a*t/c)
Relativistic rocket with exhaust velocity Ve and mass ratio MR:
at/c = Ve/c * ln(MR), or
t (unaccelerated) = c/a * sinh(Ve/c * ln(MR))
d = c**2/a * (cosh(Ve/C * ln(MR)) - 1)
v = c * tanh(Ve/C * ln(MR))
Converting from parallax to distance:
d (in parsecs) = 1 / p (in arc seconds)
d (in astronomical units) = 206265 / p
Miscellaneous
f=ma -- Force is mass times acceleration
w=fd -- Work (energy) is force times distance
Atmospheric density varies as exp(-mgz/kT) where z is altitude, m is
molecular weight in kg of air, g is local acceleration of gravity, T
is temperature, k is Bolztmann's constant. On Earth up to 100 km,
d = d0*exp(-z*1.42e-4)
where d is density, d0 is density at 0km, is approximately true, so
d@12km (40000 ft) = d0*.18
d@9 km (30000 ft) = d0*.27
d@6 km (20000 ft) = d0*.43
d@3 km (10000 ft) = d0*.65
Atmospheric scale height Dry lapse rate
(in km at emission level) (K/km)
------------------------- --------------
Earth 7.5 9.8
Mars 11 4.4
Venus 4.9 10.5
Titan 18 1.3
Jupiter 19 2.0
Saturn 37 0.7
Uranus 24 0.7
Neptune 21 0.8
Triton 8 1
Titius-Bode Law for approximating planetary distances:
R(n) = 0.4 + 0.3 * 2^N Astronomical Units (N = -infinity for
Mercury, 0 for Venus, 1 for Earth, etc.)
This fits fairly well except for Neptune.
CONSTANTS
6.62618e-34 J-s (7e-34) -- Planck's Constant "h"
1.054589e-34 J-s (1e-34) -- Planck's Constant / (2 * PI), "h bar"
1.3807e-23 J/K (1.4e-23) - Boltzmann's Constant "k"
5.6697e-8 W/m^2/K (6e-8) -- Stephan-Boltzmann Constant "sigma"
6.673e-11 N m^2/kg^2 (7e-11) -- Newton's Gravitational Constant "G"
0.0029 m K (3e-3) -- Wien's Constant "sigma(W)"
3.827e26 W (4e26) -- Luminosity of Sun
1370 W / m^2 (1400) -- Solar Constant (intensity at 1 AU)
6.96e8 m (7e8) -- radius of Sun
1738 km (2e3) -- radius of Moon
299792458 m/s (3e8) -- speed of light in vacuum "c"
9.46053e15 m (1e16) -- light year
206264.806 AU (2e5) -- \
3.2616 light years (3) -- --> parsec
3.0856e16 m (3e16) -- /
Black Hole radius (also called Schwarzschild Radius):
2GM/c^2, where G is Newton's Grav Constant, M is mass of BH,
c is speed of light
Things to add (somebody look them up!)
Basic rocketry numbers & equations
Aerodynamical stuff
Energy to put a pound into orbit or accelerate to interstellar
velocities.
Non-circular cases?
NEXT: FAQ #7/15 - Astronomical Mnemonics
------------------------------
Date: 3 May 1993 12:19:04 -0400
From: Jon Leech <leech@cs.unc.edu>
Subject: Space FAQ 07/15 - Astronomical Mnemonics
Newsgroups: sci.astro,sci.space,sci.answers,news.answers
Archive-name: space/mnemonics
Last-modified: $Date: 93/05/03 12:08:08 $
ASTRONOMICAL MNEMONICS (This is the last FAQ section posted to sci.astro)
Gathered from various flurries of mnemonic postings on sci.astro.
Spectral classification sequence: O B A F G K M R N S
Oh Be A Fine Girl Kiss Me Right Now, Sweetheart. (a classic)
O'Dell's Big Astronomical Fiasco Gonna Kill Me Right Now Surely
Obese Balding Astronomy Found Guilty; Killed Many Reluctant
Nonscience Students.
Octopus Brains, A Favorite Gastronomical Kitchen Menu,
Requires No Sauce
Odd Ball Astronomers Find Generally Kooky Mnemonics
Really Nifty Stuff
Oh Big And Ferocious Gorilla, Kill My Roomate Next Saturday
Oh Boy, A Flash! Godzilla Kills Mothra! Really Not Surprising!
Oh Boy, An F Grade Kills Me
On Bad Afternoons Fermented Grapes Keep Mrs. Richard Nixon Smiling
On, Backward Astronomer, Forget Geocentricity; Kepler's Motions
Reveal Nature's Simplicity
Our Bad Astronomy Faculty Gets Killed Monday
Oven Baked Ants, Fried Gently, Kept Moist, Retain Natural Succulence
Overseas Broadcast: A Flash! Godzilla kills Mothra!
(Rodan Named Successor)
Overweight Boys and Fat Girls Keep Munching
Only Bored Astronomers Find Gratification Knowing Mnemonics
Oh Bloody Astronomy! F Grades Kill Me
Order of the planets:
Sun
Mercury
Venus
Earth (Terra)
Mars
(Asteroids)
Jupiter
Saturn
Uranus
Neptune
Pluto
My Very Earnest Mother Just Served Us Nine Pizzas
Mother Very Thoughtfully Made A Jelly Sandwich Under No Protest
My Very Erotic Mate Joyfully Satisfies Unusual Needs Passionately
Men Very Easily Make Jugs Serve Useful Nocturnal Purposes
Man Very Early Made A Jug Serve Useful Noble Purposes
My Very Educated Mother Just Showed Us Nine Planets
My Very Eager Mother Just Showed Us Nine Planets
My Very Exhausted Mother hAs Just Swept Up a Planetary Nebula
Most Voters Earn Money Just Showing Up Near Polls
My Very Educated Mother Just Served Us Nine Pizza-pies
Many Viscious Elephants Made John, Suzy and Uncle Need Protection
Solar Mass Very Easily Makes All Jupiter's Satellites Undergo
Numerous Perturbations.
Mein Vater erklaert mir jeden Sonntag unsere niedlichen Planeten
(My Father explains to me every Sunday our nine planets)
Man verachte einen Menschen in seinem Unglueck nie -- Punkt
(Never scorn/despise a person in his misfortune/bad luck/misery
-- period!)
Colors of the spectrum: Red Orange Yellow Green Blue Indigo Violet
ROY G. BIV (pronounce as a man's name)
Richard Of York Gave Battle In Vain
Read Out Your Good Book In Verse
Galilean Satellite of Jupiter: Io Europa Ganymede Callisto
I Expect God Cries
I Eat Green Cheese
I Embarrass Good Christians
Ich erschrecke all guten Christen
(I scare all good Christians)
Saturnian Satellites
MET DR THIP
Miriam's Enchiladas Taste Divine Recently. Tell Her I'm Proud.
(Mimas, Enceladus, Tethys, Dione, Rhea, Titan, Hyperion,
Iapetus, Phoebe)
Uranian Satellites:
MAUTO
Mispronunciations Afflict Uranus Too Often
My Angel Uriel Takes Opium
(Miranda, Ariel, Umbriel, Titania, Oberon)
NOTE: the remaining FAQ sections do not appear in sci.astro, as they cover
material of relevance only to sci.space.
NEXT: FAQ #8/15 - Contacting NASA, ESA, and other space agencies/companies
------------------------------
End of Space Digest Volume 16 : Issue 520
------------------------------